Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.891
Filtrar
1.
Cell Genom ; 4(3): 100510, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38447574

RESUMO

CRISPR-Cas9 short guide RNA (sgRNA) library screening is a powerful approach to understand the molecular mechanisms of biological phenomena. However, its in vivo application is currently limited. Here, we developed our previously established in vitro revival screening method into an in vivo one to identify factors involved in spermatogenesis integrity by utilizing sperm capacitation as an indicator. By introducing an sgRNA library into testicular cells, we successfully pinpointed the retinal degeneration 3 (Rd3) gene as a significant factor in spermatogenesis. Single-cell RNA sequencing (scRNA-seq) analysis highlighted the high expression of Rd3 in round spermatids, and proteomics analysis indicated that Rd3 interacts with mitochondria. To search for cell-type-specific signaling pathways based on scRNA-seq and proteomics analyses, we developed a computational tool, Hub-Explorer. Through this, we discovered that Rd3 modulates oxidative stress by regulating mitochondrial distribution upon ciliogenesis induction. Collectively, our screening system provides a valuable in vivo approach to decipher molecular mechanisms in biological processes.


Assuntos
RNA Guia de Sistemas CRISPR-Cas , Sêmen , Masculino , Humanos , Testículo , Espermátides , Espermatogênese/genética
2.
J Exp Zool A Ecol Integr Physiol ; 341(4): 450-457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38390701

RESUMO

The apelin receptor (APJ) belongs to the member of the G protein-coupled receptor family, and expression of APJ has been reported in the different cell types of testis. The seminiferous tubules in the testis can be identified as different stages (I-XII). It has been also suggested that different factors could be expressed in stage and cell-specific manner in the seminiferous tubules. Recently, we also shown that expression of APJ is developmentally regulated in the testis from PND1 to PND42. Therefore, we analyzed the expression of APJ in the testis of adult mice by immunohistochemistry. Immunohistochemistry showed that the APJ was highly specific for the round and elongated spermatids with stage-dependent changes. The seminiferous tubules at stages I-VII showed APJ immunostaining in the spermatid steps 1-8, not steps of 13-16. The seminiferous tubules at stages IX-XII showed APJ immunostaining in the spermatid steps 9-12. These results suggested the possible role of APJ in the spermiogenesis process. The intratesticular administration of APJ antagonist, ML221 showed a few round spermatids in the seminiferous tubules and some of the tubules with complete absence of round spermatid. Overall, we present evidence that APJ expression in spermatid is dependent on the stages of the seminiferous epithelium cycle and APJ could be involved in the differentiation of round spermatid to elongated spermatid.


Assuntos
Epitélio Seminífero , Testículo , Animais , Masculino , Camundongos , Receptores de Apelina/metabolismo , Epitélio Seminífero/fisiologia , Túbulos Seminíferos , Espermátides/metabolismo
3.
Biochem Biophys Res Commun ; 702: 149633, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341921

RESUMO

Ribosomal protein 25 (RPS25) has been related to male fertility diseases in humans. However, the role of RPS25 in spermatogenesis has yet to be well understood. RpS25 is evolutionarily highly conserved from flies to humans through sequence alignment and phylogenetic tree construction. In this study, we found that RpS25 plays a critical role in Drosophila spermatogenesis and its knockdown leads to male sterility. Examination of each stage of spermatogenesis from RpS25-knockdown flies showed that RpS25 was not required for initial germline cell divisions, but was required for spermatid elongation and individualization. In RpS25-knockdown testes, the average length of cyst elongation was shortened, the spermatid nuclei bundling was disrupted, and the assembly of individualization complex from actin cones failed, resulting in the failure of mature sperm production. Our data revealed an essential role of RpS25 during Drosophila spermatogenesis through regulating spermatid elongation and individualization.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Masculino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Filogenia , Sêmen/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo
4.
Microsc Res Tech ; 87(6): 1384-1397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380818

RESUMO

Here, we describe for the first time the sperm morphology of Tingidae (Heteroptera). They are small insects presenting lacy patterns on their pronotum and hemielytra and are exclusively phytophagous, with many economically important species. We studied five species of the tribe Tingini (Tinginae): Teleonemia scrupulosa, Vatiga illudens, Gargaphia lunulata, Leptopharsa sp., and Corythucha arcuata. Their spermiogenesis process is similar to other Heteroptera, with some differences in the formation of the centriole adjunct. This structure extends in the anteroposterior spermatid axis, flanking the nucleus, possibly contributing to nucleus remodeling and sperm elongation. The mature sperm of Tingidae is also similar to that of other Heteroptera, with features that corroborate the group's monophyly. Our data support previous results for their sister family, Miridae, which exhibits some characteristics exclusive to this taxon, not present in Tingidae or other Heteroptera. They also support the sister relationship of the genera Gargaphia and Leptopharsa and suggest closer relationship between Vatiga and Corythucha. Overall, this study sheds light on the sperm ultrastructure of Tingidae and provides information for understanding the evolution and diversity of Heteroptera. RESEARCH HIGHLIGHTS: The spermiogenesis process and mature sperm are similar to other Heteroptera The centriole adjunct is derived from a strip of a pericentriolar material extending from the centriole Tingidae and Miridae are distinguishable using sperm morphology.


Assuntos
Heterópteros , Sêmen , Animais , Masculino , Heterópteros/anatomia & histologia , Espermatozoides , Espermátides , Espermatogênese
5.
Methods Mol Biol ; 2770: 53-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351446

RESUMO

In the adult mouse testis, germ cells of various developmental cell states co-exist. FACS isolation of cells stained with the DNA dye Hoechst 33342 has been used for many years to sub-divide these cells based on their DNA content. This approach provides an efficient way to obtain broad categories of male germ cells: pre-meiotic spermatogonia, meiotic spermatocytes and post-meiotic spermatids. The addition of a red filter for Hoechst staining enables further sub-division of spermatocytes depending on sub-stages of meiotic prophase. However, separation of different stage spermatids using Hoechst staining alone is not possible. We recently reported a methodology, combining Hoechst staining with a second DNA dye (SYTO16) that enables the further separation of these cells into three sub-populations: round, early elongating, and late elongating spermatids (Gill et al., Cytometry A 101:529-536, 2022). This method makes it possible to obtain rapidly and simply pure fractions of male germ cells from multiple developental stages from the same animal.


Assuntos
Benzimidazóis , Espermatogênese , Testículo , Camundongos , Animais , Masculino , Meiose , Espermátides , Espermatócitos , Células Germinativas , Coloração e Rotulagem , DNA
6.
Nat Commun ; 15(1): 1272, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341412

RESUMO

Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify allele-specific expression during spermatogenic differentiation at single-cell resolution in an F1 hybrid mouse system, allowing for the comprehensive characterisation of cis- and trans-genetic effects, including their dynamics across cellular differentiation. Collectively, almost half of the genes subject to genetic regulation show evidence for dynamic cis-effects that vary during differentiation. Our system also allows us to robustly identify dynamic trans-effects, which are less pervasive than cis-effects. In aggregate, genetic effects were strongest in round spermatids, which parallels their increased transcriptional divergence we identified between species. Our approach provides a comprehensive quantification of the variability of genetic effects in vivo, and demonstrates a widely applicable strategy to dissect the impact of regulatory variants on gene regulation in dynamic systems.


Assuntos
Regulação da Expressão Gênica , Espermátides , Masculino , Animais , Camundongos
7.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345229

RESUMO

Round spermatids, characterized by their haploid genetic content, represent the precursor cells to mature spermatozoa. Through the innovative technique of round spermatid injection (ROSI), oocytes can be successfully fertilized and developed into viable fetuses. In a groundbreaking milestone achieved in 1995, the first mouse fetus was born through ROSI technology. ROSI has since emerged as a pivotal tool for unraveling the intricate mechanisms governing embryonic development and holds significant potential in various applications, including the acceleration of mouse generation and the production of genetically modified mice. In 1996, a milestone was reached when the first human fetus was born through ROSI technology. However, the clinical applications of this method have shown a fluctuating pattern of success and failure. To date, ROSI technology has not found widespread application in clinical practice, primarily due to its low birth efficiency and insufficient validation of fetal safety. This article provides a comprehensive account of the precise methods of performing ROSI in mice, aiming to shed new light on basic research and its potential clinical applications.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Gravidez , Masculino , Feminino , Camundongos , Animais , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides , Oócitos , Desenvolvimento Embrionário
8.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355802

RESUMO

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Assuntos
Elementos de DNA Transponíveis , Íntrons , Precursores de RNA , Splicing de RNA , RNA Mensageiro , Animais , Humanos , Masculino , Camundongos , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Éxons/genética , Genoma/genética , Íntrons/genética , Especificidade de Órgãos/genética , RNA de Interação com Piwi/genética , RNA de Interação com Piwi/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Splicing de RNA/genética , Testículo , Meiose
9.
Cancer Lett ; 586: 216672, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280476

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression. STRBP expression was upregulated in TNBC tissues and correlated with poor disease prognosis. Functionally, STRBP promoted TNBC cell proliferation, migration, and invasion in vitro, and enhanced xenograft tumor growth and lung colonization in mice. Mechanistically, STRBP interacted with Dicer, a core component of the microRNA biogenesis machinery, and promoted its proteasomal degradation through enhancing its interaction with E3 ubiquitin ligase UBR5. MicroRNA-sequencing analysis identified miR-200a-3p as a downstream effector of STRBP, which was regulated by Dicer and affected epithelial-mesenchymal transition. Importantly, the impaired malignant phenotypes of TNBC cells caused by STRBP depletion were largely rescued by knockdown of Dicer, and these effects were compromised by transfection of miR-200a-3p mimics. Collectively, these findings revealed a previously unrecognized oncogenic role of STRBP in TNBC progression and identified STRBP as a promising target against TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteólise , Sêmen/metabolismo , Espermátides/metabolismo , Espermátides/patologia , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Biol Reprod ; 110(4): 834-847, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38281153

RESUMO

Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice. PABPC6 was initially detectable in the cytoplasm of pachytene spermatocytes, increased in abundance in round spermatids, and decreased in elongating spermatids. PABPC6 was capable of binding to poly(A) tails of various mRNAs and interacting with translation-associated factors, including EIF4G, PAIP1, and PAIP2. Noteworthy was that PABPC6, unlike PABPC1, was barely associated with translationally active polysomes and enriched in chromatoid bodies of round spermatids. Despite these unique characteristics, neither synthesis of testicular proteins nor spermatogenesis was affected in the mutant mice lacking PABPC6, suggesting that PABPC6 is functionally redundant with other co-existing PABPC proteins during spermatogenesis.


Assuntos
Espermatogênese , Testículo , Humanos , Masculino , Camundongos , Feminino , Animais , Testículo/metabolismo , Espermatogênese/genética , Espermátides/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Biol Reprod ; 110(2): 377-390, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37956402

RESUMO

The function of dopamine receptor D2 (D2R) is well associated with sperm motility; however, the physiological role of D2R present on testicular cells remains elusive. The aim of the present study is to delineate the function of testicular D2R. Serum dopamine levels were found to decrease with age, whereas testicular D2R expression increased. In rat testicular sections, D2R immunolabeling was observed in interstitial cells, spermatogonia, spermatocytes and mature elongated spermatids, whereas tyrosine hydroxylase immunolabeling was selectively detected in Leydig cells. In vitro seminiferous tubule culture following bromocriptine (D2R agonist) treatment resulted in decreased cAMP levels. Microarray identified 1077 differentially expressed genes (511 up-regulated, 566 down-regulated). The majority of differentially expressed genes were present in post-meiotic cells including early and late spermatids, and sperm. Gene ontology elucidated processes related to extra-cellular matrix to be enriched and was supported by differential expression of various collagens and laminins, thereby indicating a role of dopamine in extra-cellular matrix integrity and transport of spermatids across the seminiferous epithelium. Gene ontology and enrichment map also highlighted cell/sperm motility to be significantly enriched. Therefore, genes involved in sperm motility functions were further validated by RT-qPCR. Seven genes (Akap4, Ccnyl1, Iqcf1, Klc3, Prss55, Tbc1d21, Tl18) were significantly up-regulated, whereas four genes (Dnah1, Dnah5, Clxn, Fsip2) were significantly down-regulated by bromocriptine treatment. The bromocriptine-stimulated reduction in seminiferous tubule cyclic AMP and associated changes in spermatid gene expression suggests that dopamine regulates both spermatogenesis and spermiogenesis within the seminiferous epithelium, and spermatozoa motility following spermiation, as essential processes for fertility.


Assuntos
Motilidade dos Espermatozoides , Testículo , Ratos , Animais , Masculino , Testículo/metabolismo , Bromocriptina/metabolismo , Dopamina/farmacologia , Sêmen , Espermatozoides/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Receptores Dopaminérgicos/metabolismo
12.
Cell Calcium ; 117: 102820, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979343

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream protein kinases, including CaMKI, CaMKIV, PKB/Akt, and AMPK; thus, regulates various Ca2+-dependent physiological and pathophysiological pathways. Further, CaMKKß/2 in mammalian species comprises multiple alternatively spliced variants; however, their functional differences or redundancy remain unclear. In this study, we aimed to characterize mouse CaMKKß/2 splice variants (CaMKKß-3 and ß-3x). RT-PCR analyses revealed that mouse CaMKKß-1, consisting of 17 exons, was predominantly expressed in the brain; whereas, mouse CaMKKß-3 and ß-3x, lacking exon 16 and exons 14/16, respectively, were primarily expressed in peripheral tissues. At the protein level, the CaMKKß-3 or ß-3x variants showed high expression levels in mouse cerebrum and testes. This was consistent with the localization of CaMKKß-3/-3x in spermatids in seminiferous tubules, but not the localization of CaMKKß-1. We also observed the co-localization of CaMKKß-3/-3x with a target kinase, CaMKIV, in elongating spermatids. Biochemical characterization further revealed that CaMKKß-3 exhibited Ca2+/CaM-induced kinase activity similar to CaMKKß-1. Conversely, we noted that CaMKKß-3x impaired Ca2+/CaM-binding ability, but exhibited significantly weak autonomous activity (approximately 500-fold lower than CaMKKß-1 or ß-3) due to the absence of C-terminal of the catalytic domain and a putative residue (Ile478) responsible for the kinase autoinhibition. Nevertheless, CaMKKß-3x showed the ability to phosphorylate downstream kinases, including CaMKIα, CaMKIV, and AMPKα in transfected cells comparable to CaMKKß-1 and ß-3. Collectively, CaMKKß-3/-3x were identified as functionally active and could be bona fide CaMKIV-kinases in testes involved in the activation of the CaMKIV cascade in spermatids, resulting in the regulation of spermiogenesis.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Espermátides , Masculino , Camundongos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Espermátides/metabolismo , Fosforilação , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
13.
Cell Tissue Res ; 395(2): 171-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087073

RESUMO

Adropin, a multifaceted peptide, was identified as a new metabolic hormone responsible for regulating gluco-lipid homeostasis. However, its role in the testicular function is not yet understood. We aimed to investigate the localization and expression of adropin and GPR19 during different phases of postnatal development. Immunohistochemical study revealed the intense reactivity of adropin in the Leydig cells during all phases of postnatal development, while GPR19 showed intense immunoreactivity in the pachytene spermatocytes and mild immunoreactivity in Leydig cells as well as primary and secondary spermatocytes. Western blot study revealed maximum expression of GPR19 in pre-pubertal mouse testis that clearly indicates maximum responsiveness of adropin during that period. So, we hypothesized that adropin may act as an autocrine/paracrine factor that regulates pubertal changes in mouse testis. To examine the effect of adropin on pubertal onset, we gave bilateral intra-testicular doses (0.5 and 1.5 µg/testis) to pre-pubertal mice. Adropin treatment promoted testicular testosterone synthesis by increasing the expression of StAR, 3ß-HSD, and 17ß-HSD. Adropin also promoted germ cell survival and proliferation by upregulating the expression of PCNA and downregulating the Bax/Bcl2 ratio and Caspase 3 expression resulting in fewer TUNEL-positive cells in adropin-treated groups. FACS analysis demonstrated that adropin treatment not only increases 1C to 4C ratio but also significantly increases the 1C (spermatid) and 1C to 2C ratio which demarcates accelerated germ cell differentiation and turnover of testicular cells. In conclusion, adropin promotes steroidogenesis, germ cell survival, as well as the proliferation in the pre-pubertal mouse testis that may hasten the pubertal transition in an autocrine/paracrine manner.


Assuntos
Células Intersticiais do Testículo , Testículo , Masculino , Camundongos , Animais , Células Intersticiais do Testículo/metabolismo , Espermátides/metabolismo , Diferenciação Celular , Testosterona/metabolismo
14.
Theriogenology ; 216: 42-52, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154205

RESUMO

Spermatogenesis is a finely regulated process that involves the interaction of several cellular mechanisms to ensure the proper development and maturation of germ cells. This study assessed autophagy contribution and its relation to apoptosis in fish spermatogenesis during starvation. To that end, Nile tilapia males were subjected to 0 (control), 7, 14, 21, and 28 days of starvation to induce autophagy. Testes samples were obtained for analyses of spermatogenesis by histology, electron microscopy, immunohistochemistry, and western blotting. Sperm quality was assessed using a computer-assisted sperm analysis (CASA) system. Data indicated a significant reduction in gonadosomatic index, seminiferous tubule area, and spermatozoa proportion in fish subject to starvation compared to the control group. Immunoblotting revealed a reduction of Bcl2 and Beclin 1 associated with increased Bax and Caspase-3, mainly after 21 and 28 days of starvation. LC3 and P62 indicated reduced autophagic flux in these starvation times. Immunolabeling for autophagic and apoptotic proteins occurred in all development stages of the germ cells, but protein expression varied throughout starvation. Beclin 1 and Cathepsin D decreased while Bax and Caspase-3 increased in spermatocytes, spermatids, and spermatozoa after 21 and 28 days. Autophagic and lysosomal proteins colocalization indicated the fusion of autophagosomes with lysosomes and lysosomal degradation in spermatogenic cells. The CASA system indicated reduced sperm motility and velocity in animals subjected to 21 and 28 days of starvation. Altogether, the data support autophagy acting at different spermatogenesis stages in Nile tilapia, with decreased autophagy and increased apoptosis after 21 and 28 days of starvation, which results in a decrease in the spermatozoa number and sperm quality.


Assuntos
Ciclídeos , Masculino , Animais , Caspase 3/metabolismo , Ciclídeos/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína X Associada a bcl-2/metabolismo , Motilidade dos Espermatozoides , Sêmen/metabolismo , Espermatozoides/metabolismo , Espermatogênese , Espermátides , Autofagia
15.
J Environ Sci (China) ; 138: 531-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135418

RESUMO

The environmental presence of decabromodiphenyl ether (BDE-209), which is toxic to the male reproductive system, is widespread. The current study investigated its mechanism of toxicity in mice. The results showed, that BDE-209 induced DNA damage, decreased the expression of the promoter of meiosis spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (Sohlh1), meiosis related-factors Lethal (3) malignant brain tumor like 2 (L3MBTL2), PIWI-like protein 2 (MILI), Cyclin-dependent kinase 2 (CDK2), Cyclin A, synaptonemal complex protein 1 (SYCP1) and synaptonemal complex protein 3 (SYCP3), and caused spermatogenic cell apoptosis, resulting in a decrease in sperm quantity and quality. Furthermore, BDE-209 downregulated the levels of anaphase-promoting complex/cyclosome (APC/C), increased the expression of PIWI-like protein 1 (MIWI) in the cytoplasm of elongating spermatids, and decreased the nuclear levels of RING finger protein 8 (RNF8), ubiquitinated (ub)-H2A/ub-H2B, and Protamine 1 (PRM1)/Protamine 2 (PRM2), while increasing H2A/H2B nuclear levels in spermatids. The reproductive toxicity was persistent for 50 days following the withdrawal of BDE-209 exposure. The results suggested that BDE-209 inhibits the initiation of meiosis by decreasing the expression of Sohlh1. Furthermore, the reduced expression of L3MBTL2 inhibited the formation of chromosomal synaptonemal complexes by depressing the expression of meiosis regulators affecting the meiotic progression and also inhibited histone ubiquitination preventing the replacement of histones by protamines, by preventing RNF8 from entering nuclei, which affected the evolution of spermatids into mature sperm.


Assuntos
Espermátides , Espermatócitos , Masculino , Camundongos , Animais , Espermátides/metabolismo , Espermatócitos/metabolismo , Sêmen , Cromossomos
16.
Gene ; 893: 147883, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839768

RESUMO

Genetic and epigenetic changes in sperm caused by male aging may be essential factors affecting semen parameters, but the effects and specific molecular mechanisms of aging on male reproduction have not been fully clarified. In this study, to explore the effect of aging on male fertility and seek the potential molecular etiology, we performed high-throughput RNA-sequencing in isolated spermatogenic cells, including pachytene spermatocytes (marked by the completion of chromosome synapsis) and round spermatids (produced by the separation of sister chromatids) from the elderly and the young men. Functional enrichment analysis of differentially expressed genes (DEGs) in round spermatids between the elderly and young showed that they were significantly enriched in gamete generation, spindle assembly, and cilium movement involved in cell motility. In addition, the expression levels of DEGs in round spermatids (post-meiotic cells) were found to be more susceptible to age. Furthermore, ten genes (AURKA, CCNB1, CDC20, CCNB2, KIF2C, KIAA0101, NR5A1, PLK1, PTTG1, RAD51AP1) were identified to be the hub genes involved in the regulation of sperm quality in the elderly through Protein-Protein Interaction (PPI) network construction and measuring semantic among GO terms and gene products. Our data provide aging-related molecular alterations in meiotic and post-meiotic spermatogenic cells, and the information gained from this study may explain the abnormal aging-related male fertility decline.


Assuntos
Sêmen , Espermátides , Masculino , Humanos , Idoso , Espermátides/metabolismo , Espermatozoides/metabolismo , Perfilação da Expressão Gênica , Fertilidade/genética , Espermatogênese/genética
17.
PLoS Genet ; 19(12): e1011081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048317

RESUMO

Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.


Assuntos
Sêmen , Espermatogênese , Abelhas/genética , Masculino , Animais , Espermatogênese/genética , Espermátides/metabolismo , Testículo , Espermatócitos/metabolismo , Meiose/genética
18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069021

RESUMO

Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.


Assuntos
Kisspeptinas , Testículo , Masculino , Animais , Suínos , Testículo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Maturidade Sexual/genética , Espermátides/metabolismo , Reprodução/genética
19.
Mol Reprod Dev ; 90(12): 804-809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992210

RESUMO

In mammals, the generation of sperm cells capable of fertilization is a highly complex process including spermatogenesis in the testis and maturation in the epididymis. In our previous study, we have demonstrated that FAM71D (Family with sequence similarity 71, member D), which could interact with calmodulin, was highly expressed in human and mouse testis. To investigate the physiological role of FAM71D in spermatogenesis, we next generate Fam71d loss-of-function mouse model using CRISPR/Cas9 technology. We performed immunofluorescence and RT-qPCR to examine the protein and mRNA expression in testicular cells. We found that FAM71D was predominantly localized in the round and elongated spermatids. And FAM71D KO mice displayed normal development of germ cell and fertility. Furthermore, testicular histology and sperm concentration showed no significant difference between WT and KO mice. These data demonstrate that FAM71D is dispensable for mouse spermatogenesis and male fertility.


Assuntos
Sêmen , Espermatogênese , Masculino , Camundongos , Humanos , Animais , Sêmen/metabolismo , Camundongos Knockout , Espermatogênese/genética , Testículo/metabolismo , Espermatozoides/metabolismo , Espermátides/metabolismo , Fertilidade/genética , Calmodulina/metabolismo , Mamíferos
20.
Curr Protoc ; 3(11): e920, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933593

RESUMO

Human fertility is declining in Western countries, and it is becoming increasingly clear that male infertility plays a pivotal role in the overall fertility decline. To understand the process that drives successful male germ cell maturation, the study of spermatogenesis of model organisms, such as mice, is essential. Residual bodies (RBs) play an important role in the last stages of spermatogenesis. They are formed at the time when post-meiotic spermatids undergo sequential differentiation steps so that the acrosome and flagellum are developed, the nucleus is markedly condensed, and the cytoplasm is lost. The masses of lost cytoplasm become RBs. Our recent work has shown that RB dynamics are highly sensitive to even small fertility defects. It was also noted that the transcriptome and proteome of RBs changes in response to spermatogenic defects. Thus, RBs represent an excellent and highly sensitive entity for studying male fertility. Previously published protocols for RB purification had some major limitations: they produced an RB fraction that was heavily contaminated with spermatozoa and erythrocytes or required tens of grams of starting material. In addition, most of the available protocols were developed for purification of RBs from rat testes. Here, we present a protocol that allows the isolation of 2.5-3 × 106 RBs from mouse testes with a purity of 98% from only 1 g of starting material. The purified material can be used for various downstream applications to study male fertility, such as transcriptome and proteome analyses, super-resolution microscopy, and electron and cryo-electron microscopy, amongst many others. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: An improved method for purification of the residual bodies from the seminiferous tubules of mice.


Assuntos
Proteoma , Túbulos Seminíferos , Ratos , Camundongos , Masculino , Animais , Humanos , Microscopia Crioeletrônica , Túbulos Seminíferos/fisiologia , Espermatozoides , Espermátides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...